cs.AI updates on arXiv.org 前天 12:12
基于CNN的射频指纹识别框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于卷积神经网络(CNN)的射频指纹识别框架,用于检测恶意设备和识别真实设备。通过收集不同设备的射频样本,训练GAN模拟攻击,验证了该框架的有效性。

arXiv:2510.09663v1 Announce Type: cross Abstract: Radio Frequency Fingerprinting (RFF) has evolved as an effective solution for authenticating devices by leveraging the unique imperfections in hardware components involved in the signal generation process. In this work, we propose a Convolutional Neural Network (CNN) based framework for detecting rogue devices and identifying genuine ones using softmax probability thresholding. We emulate an attack scenario in which adversaries attempt to mimic the RF characteristics of genuine devices by training a Generative Adversarial Network (GAN) using In-phase and Quadrature (IQ) samples from genuine devices. The proposed approach is verified using IQ samples collected from ten different ADALM-PLUTO Software Defined Radios (SDRs), with seven devices considered genuine, two as rogue, and one used for validation to determine the threshold.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

射频指纹识别 卷积神经网络 恶意设备检测
相关文章