cs.AI updates on arXiv.org 10月14日 12:11
TinyViT-Batten:早期Batten病AI检测新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出TinyViT-Batten,一种基于Vision Transformer的AI框架,用于从儿童脑MRI中检测早期Batten病,并实现高准确率和可解释性预测。

arXiv:2510.09649v1 Announce Type: cross Abstract: Batten disease (neuronal ceroid lipofuscinosis) is a rare pediatric neurodegenerative disorder whose early MRI signs are subtle and often missed. We propose TinyViT-Batten, a few-shot Vision Transformer (ViT) framework to detect early Batten disease from pediatric brain MRI with limited training cases. We distill a large teacher ViT into a 5 M-parameter TinyViT and fine-tune it using metric-based few-shot learning (prototypical loss with 5-shot episodes). Our model achieves high accuracy (approximately 91%) and area under ROC of at least 0.95 on a multi-site dataset of 79 genetically confirmed Batten-disease MRIs (27 CLN3 from the Hochstein natural-history study, 32 CLN2 from an international longitudinal cohort, 12 early-manifestation CLN2 cases reported by Cokal et al., and 8 public Radiopaedia scans) together with 90 age-matched controls, outperforming a 3D-ResNet and Swin-Tiny baseline. We further integrate Gradient-weighted Class Activation Mapping (Grad-CAM) to highlight disease-relevant brain regions, enabling explainable predictions. The model's small size and strong performance (sensitivity greater than 90%, specificity approximately 90%) demonstrates a practical AI solution for early Batten disease detection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Batten病 AI检测 Vision Transformer 儿童脑MRI 早期诊断
相关文章