cs.AI updates on arXiv.org 10月14日 12:10
构建可解释的在线零售客户流失模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种集成可解释AI、生存分析和RFM客户细分的三维框架,以量化特征贡献、模型客户流失风险,并指导个性化客户保留策略,以降低客户流失并增强客户忠诚度。

arXiv:2510.11604v1 Announce Type: new Abstract: In online retail, customer acquisition typically incurs higher costs than customer retention, motivating firms to invest in churn analytics. However, many contemporary churn models operate as opaque black boxes, limiting insight into the determinants of attrition, the timing of retention opportunities, and the identification of high-risk customer segments. Accordingly, the emphasis should shift from prediction alone to the design of personalized retention strategies grounded in interpretable evidence. This study advances a three-component framework that integrates explainable AI to quantify feature contributions, survival analysis to model time-to-event churn risk, and RFM profiling to segment customers by transactional behaviour. In combination, these methods enable the attribution of churn drivers, estimation of intervention windows, and prioritization of segments for targeted actions, thereby supporting strategies that reduce attrition and strengthen customer loyalty.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

客户流失 可解释AI 在线零售 客户保留 生存分析
相关文章