cs.AI updates on arXiv.org 10月14日 12:09
具身AI神经症特征框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种具身AI神经症特征的框架,通过分析规划、不确定性处理和厌恶记忆之间的交互,描述了网格导航中的各种行为模式,并提出在线检测器和逃避策略。研究指出,局部修正不足以解决问题,需全局性改进。

arXiv:2510.10823v1 Announce Type: new Abstract: We present a framework for characterizing neurosis in embodied AI: behaviors that are internally coherent yet misaligned with reality, arising from interactions among planning, uncertainty handling, and aversive memory. In a grid navigation stack we catalogue recurrent modalities including flip-flop, plan churn, perseveration loops, paralysis and hypervigilance, futile search, belief incoherence, tie break thrashing, corridor thrashing, optimality compulsion, metric mismatch, policy oscillation, and limited-visibility variants. For each we give lightweight online detectors and reusable escape policies (short commitments, a margin to switch, smoothing, principled arbitration). We then show that durable phobic avoidance can persist even under full visibility when learned aversive costs dominate local choice, producing long detours despite globally safe routes. Using First/Second/Third Law as engineering shorthand for safety latency, command compliance, and resource efficiency, we argue that local fixes are insufficient; global failures can remain. To surface them, we propose genetic-programming based destructive testing that evolves worlds and perturbations to maximize law pressure and neurosis scores, yielding adversarial curricula and counterfactual traces that expose where architectural revision, not merely symptom-level patches, is required.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

具身AI 神经症特征 在线检测 逃避策略 全局修正
相关文章