cs.AI updates on arXiv.org 10月14日 12:09
DRIFT:LLM数学公式自动形式化新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DRIFT框架,旨在解决大型语言模型在数学公式自动形式化过程中的挑战。通过分解复杂数学语句,DRIFT提高了公式自动形式化的检索效果,并在ProofNet等基准测试中表现出色。

arXiv:2510.10815v1 Announce Type: new Abstract: Automating the formalization of mathematical statements for theorem proving remains a major challenge for Large Language Models (LLMs). LLMs struggle to identify and utilize the prerequisite mathematical knowledge and its corresponding formal representation in languages like Lean. Current retrieval-augmented autoformalization methods query external libraries using the informal statement directly, but overlook a fundamental limitation: informal mathematical statements are often complex and offer limited context on the underlying math concepts. To address this, we introduce DRIFT, a novel framework that enables LLMs to decompose informal mathematical statements into smaller, more tractable ''sub-components''. This facilitates targeted retrieval of premises from mathematical libraries such as Mathlib. Additionally, DRIFT retrieves illustrative theorems to help models use premises more effectively in formalization tasks. We evaluate DRIFT across diverse benchmarks (ProofNet, ConNF, and MiniF2F-test) and find that it consistently improves premise retrieval, nearly doubling the F1 score compared to the DPR baseline on ProofNet. Notably, DRIFT demonstrates strong performance on the out-of-distribution ConNF benchmark, with BEq+@10 improvements of 37.14% and 42.25% using GPT-4.1 and DeepSeek-V3.1, respectively. Our analysis shows that retrieval effectiveness in mathematical autoformalization depends heavily on model-specific knowledge boundaries, highlighting the need for adaptive retrieval strategies aligned with each model's capabilities.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DRIFT LLM 数学公式自动形式化 ProofNet 检索效果
相关文章