cs.AI updates on arXiv.org 10月14日 12:09
LLM性能提升:直觉-方法层模型与范围扩展
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种整合直觉推理和范围扩展的LLM模型,通过构建知识网络和熵度量,提高模型处理未见问题的能力。

arXiv:2510.10592v1 Announce Type: new Abstract: Existing studies have introduced method-based reasoning and scope extension as approaches to enhance Large Language Model (LLM) performance beyond direct matrix mappings. Building on these foundations, this paper summarizes and integrates these ideas into a unified Intuition-Method Layered Model with Scope Extension, designed to address indirected (unseen) issues more systematically. In this framework, intuition-based thinking provides rapid first-reaction answers, while method-based thinking decouples questions and solutions into transferable reasoning units. Scope extension is then applied to broaden applicability, including vertical (cause analysis), horizontal (parallel and generalized issues), and for the first time, temporal and spatial extensions, which expand reasoning across time and contextual dimensions. These extensions are organized into systematic knowledge trees that interconnect into a knowledge network, thereby increasing adaptability. To quantitatively evaluate this process, we propose the entropy of method extension, which measures the independence and diversity of extensions as an indicator of the system's capacity to solve unseen questions. By logically connecting existing approaches with new extensions and introducing an entropy-based evaluation framework, this work advances toward a more robust and extensible reasoning paradigm for LLMs in real-world problem-solving.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 模型设计 知识网络 熵度量
相关文章