cs.AI updates on arXiv.org 10月14日 12:08
LLMs推理缺陷与改进策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型在推理上的缺陷,如幻觉和逻辑谬误分类不准确,并提出了一种基于指令的低成本干预方法,通过分解逻辑谬误分类为一系列原子步骤,并引入知识图谱验证,显著提升了LLMs的逻辑谬误分类能力,同时提高了决策透明度。

arXiv:2510.09970v1 Announce Type: new Abstract: Large Language Models (LLMs) suffer from critical reasoning gaps, including a tendency to hallucinate and poor accuracy in classifying logical fallacies. This limitation stems from their default System 1 processing, which is fast and intuitive, whereas reliable reasoning requires the deliberate, effortful System 2 approach (Kahneman, 2011; Li et al., 2025). Since full System 2 training is often prohibitively expensive, we explore a low-cost, instruction-based intervention to bridge this gap. Our methodology introduces a novel stepwise instruction dataset that decomposes fallacy classification into a series of atomic procedural steps (simple binary questions). We further augment this with a final verification step where models consult a relational knowledge graph of related fallacies. This procedural, rule-based intervention yields a significant improvement in LLM logical fallacy classification. Crucially, the approach also provides enhanced transparency into the LLMs' decision-making, highlighting a practical pathway for Neuro-symbolic architectures to address LLM reasoning deficits.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 逻辑谬误 推理缺陷 知识图谱 神经符号架构
相关文章