cs.AI updates on arXiv.org 10月13日 12:15
OrcaLoca:提升软件问题定位准确性的LLM框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为OrcaLoca的LLM代理框架,通过整合优先级调度、动作分解与相关性评分以及距离感知的上下文修剪,显著提升了软件问题定位的准确性。实验结果表明,在SWE-bench Lite上,OrcaLoca在功能匹配率方面达到了65.33%,成为新的开源SOTA,并通过补丁生成集成,将开源框架的最终解决率提升了6.33个百分点。

arXiv:2502.00350v2 Announce Type: replace-cross Abstract: Recent developments in Large Language Model (LLM) agents are revolutionizing Autonomous Software Engineering (ASE), enabling automated coding, problem fixes, and feature improvements. However, localization -- precisely identifying software problems by navigating to relevant code sections -- remains a significant challenge. Current approaches often yield suboptimal results due to a lack of effective integration between LLM agents and precise code search mechanisms. This paper introduces OrcaLoca, an LLM agent framework that improves accuracy for software issue localization by integrating priority-based scheduling for LLM-guided action, action decomposition with relevance scoring, and distance-aware context pruning. Experimental results demonstrate that OrcaLoca becomes the new open-source state-of-the-art (SOTA) in function match rate (65.33%) on SWE-bench Lite. It also improves the final resolved rate of an open-source framework by 6.33 percentage points through its patch generation integration.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 软件工程 问题定位 OrcaLoca 自动化
相关文章