cs.AI updates on arXiv.org 10月13日 12:14
Y算子提升AC强化学习控制性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型算子Y,用于提升基于随机微分方程的Actor-Critic强化学习控制性能。Y算子有效融合了子母系统的随机性,优化了Critic网络的损失函数,并通过数学证明验证了其有效性。YORL框架在模型和数据驱动系统中表现出色,并通过数值示例证明了其优越性。

arXiv:2311.04014v4 Announce Type: replace Abstract: This paper introduces a novel operator, termed the Y operator, to elevate control performance in Actor-Critic(AC) based reinforcement learning for systems governed by stochastic differential equations(SDEs). The Y operator ingeniously integrates the stochasticity of a class of child-mother system into the Critic network's loss function, yielding substantial advancements in the control performance of RL algorithms.Additionally, the Y operator elegantly reformulates the challenge of solving partial differential equations for the state-value function into a parallel problem for the drift and diffusion functions within the system's SDEs.A rigorous mathematical proof confirms the operator's validity.This transformation enables the Y Operator-based Reinforcement Learning(YORL) framework to efficiently tackle optimal control problems in both model-based and data-driven systems.The superiority of YORL is demonstrated through linear and nonlinear numerical examples showing its enhanced performance over existing methods post convergence.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Y算子 强化学习 控制性能 随机微分方程 Actor-Critic
相关文章