cs.AI updates on arXiv.org 10月13日 12:14
多天气象图像与视频恢复技术综述
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了针对多天气象图像与视频恢复技术的研究进展,涵盖了传统基于先验的方法和现代数据驱动模型,并探讨了未来研究方向。

arXiv:2510.09228v1 Announce Type: cross Abstract: Adverse weather conditions such as haze, rain, and snow significantly degrade the quality of images and videos, posing serious challenges to intelligent transportation systems (ITS) that rely on visual input. These degradations affect critical applications including autonomous driving, traffic monitoring, and surveillance. This survey presents a comprehensive review of image and video restoration techniques developed to mitigate weather-induced visual impairments. We categorize existing approaches into traditional prior-based methods and modern data-driven models, including CNNs, transformers, diffusion models, and emerging vision-language models (VLMs). Restoration strategies are further classified based on their scope: single-task models, multi-task/multi-weather systems, and all-in-one frameworks capable of handling diverse degradations. In addition, we discuss day and night time restoration challenges, benchmark datasets, and evaluation protocols. The survey concludes with an in-depth discussion on limitations in current research and outlines future directions such as mixed/compound-degradation restoration, real-time deployment, and agentic AI frameworks. This work aims to serve as a valuable reference for advancing weather-resilient vision systems in smart transportation environments. Lastly, to stay current with rapid advancements in this field, we will maintain regular updates of the latest relevant papers and their open-source implementations at https://github.com/ChaudharyUPES/A-comprehensive-review-on-Multi-weather-restoration

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像与视频恢复 数据驱动模型 多天气象
相关文章