cs.AI updates on arXiv.org 10月13日 12:14
多模态扩散模型提升细胞核分割
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为MSDM的多模态语义扩散模型,用于生成细胞和核的像素级精确图像掩码对,解决计算病理学中细胞和核分割的标注数据稀缺问题。通过结合细胞核形态、颜色特征和元数据,MSDM生成具有期望形态属性的数据集,显著提高分割模型在列状细胞上的准确率。

arXiv:2510.09121v1 Announce Type: cross Abstract: Scarcity of annotated data, particularly for rare or atypical morphologies, present significant challenges for cell and nuclei segmentation in computational pathology. While manual annotation is labor-intensive and costly, synthetic data offers a cost-effective alternative. We introduce a Multimodal Semantic Diffusion Model (MSDM) for generating realistic pixel-precise image-mask pairs for cell and nuclei segmentation. By conditioning the generative process with cellular/nuclear morphologies (using horizontal and vertical maps), RGB color characteristics, and BERT-encoded assay/indication metadata, MSDM generates datasests with desired morphological properties. These heterogeneous modalities are integrated via multi-head cross-attention, enabling fine-grained control over the generated images. Quantitative analysis demonstrates that synthetic images closely match real data, with low Wasserstein distances between embeddings of generated and real images under matching biological conditions. The incorporation of these synthetic samples, exemplified by columnar cells, significantly improves segmentation model accuracy on columnar cells. This strategy systematically enriches data sets, directly targeting model deficiencies. We highlight the effectiveness of multimodal diffusion-based augmentation for advancing the robustness and generalizability of cell and nuclei segmentation models. Thereby, we pave the way for broader application of generative models in computational pathology.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

细胞核分割 计算病理学 多模态扩散模型
相关文章