cs.AI updates on arXiv.org 10月13日
平台X:高效能硬件感知神经架构搜索框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PlatformX,一个自动化的硬件感知神经架构搜索框架,旨在解决现有方法在实际部署中的局限性,通过能量驱动的搜索空间、跨设备迁移的能源预测器、多目标搜索算法和自动化能量监测系统,显著降低搜索开销,同时保持准确性和能源效率。

arXiv:2510.08993v1 Announce Type: cross Abstract: Hardware-Aware Neural Architecture Search (HW-NAS) has emerged as a powerful tool for designing efficient deep neural networks (DNNs) tailored to edge devices. However, existing methods remain largely impractical for real-world deployment due to their high time cost, extensive manual profiling, and poor scalability across diverse hardware platforms with complex, device-specific energy behavior. In this paper, we present PlatformX, a fully automated and transferable HW-NAS framework designed to overcome these limitations. PlatformX integrates four key components: (i) an energy-driven search space that expands conventional NAS design by incorporating energy-critical configurations, enabling exploration of high-efficiency architectures; (ii) a transferable kernel-level energy predictor across devices and incrementally refined with minimal on-device samples; (iii) a Pareto-based multi-objective search algorithm that balances energy and accuracy to identify optimal trade-offs; and (iv) a high-resolution runtime energy profiling system that automates on-device power measurement using external monitors without human intervention. We evaluate PlatformX across multiple mobile platforms, showing that it significantly reduces search overhead while preserving accuracy and energy fidelity. It identifies models with up to 0.94 accuracy or as little as 0.16 mJ per inference, both outperforming MobileNet-V2 in accuracy and efficiency. Code and tutorials are available at github.com/amai-gsu/PlatformX.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

硬件感知神经架构搜索 能源效率 多目标搜索算法 自动化能量监测
相关文章