cs.AI updates on arXiv.org 10月13日 12:13
电影推荐系统:人机协作用户画像研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了一种基于自然语言处理的电影推荐系统用户画像,通过人机协作的方式,帮助用户审视和调整兴趣,提高推荐质量。在八周线上试验中,发现用户感知与系统推断存在差距,提出设计方向以利用不完美的AI用户画像促进用户干预,构建透明可信的推荐体验。

arXiv:2510.08930v1 Announce Type: cross Abstract: Natural language-based user profiles in recommender systems have been explored for their interpretability and potential to help users scrutinize and refine their interests, thereby improving recommendation quality. Building on this foundation, we introduce a human-AI collaborative profile for a movie recommender system that presents editable personalized interest summaries of a user's movie history. Unlike static profiles, this design invites users to directly inspect, modify, and reflect on the system's inferences. In an eight-week online field deployment with 1775 active movie recommender users, we find persistent gaps between user-perceived and system-inferred interests, show how the profile encourages engagement and reflection, and identify design directions for leveraging imperfect AI-powered user profiles to stimulate more user intervention and build more transparent and trustworthy recommender experiences.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

电影推荐系统 用户画像 人机协作 自然语言处理 推荐质量
相关文章