cs.AI updates on arXiv.org 10月13日
LLM赋能生物医学命名实体识别
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于大型语言模型的生物医学命名实体识别框架,通过文本生成和符号标注策略解决嵌套实体识别问题,并实现跨语言零样本泛化。

arXiv:2510.08902v1 Announce Type: cross Abstract: Accurate recognition of biomedical named entities is critical for medical information extraction and knowledge discovery. However, existing methods often struggle with nested entities, entity boundary ambiguity, and cross-lingual generalization. In this paper, we propose a unified Biomedical Named Entity Recognition (BioNER) framework based on Large Language Models (LLMs). We first reformulate BioNER as a text generation task and design a symbolic tagging strategy to jointly handle both flat and nested entities with explicit boundary annotation. To enhance multilingual and multi-task generalization, we perform bilingual joint fine-tuning across multiple Chinese and English datasets. Additionally, we introduce a contrastive learning-based entity selector that filters incorrect or spurious predictions by leveraging boundary-sensitive positive and negative samples. Experimental results on four benchmark datasets and two unseen corpora show that our method achieves state-of-the-art performance and robust zero-shot generalization across languages. The source codes are freely available at https://github.com/dreamer-tx/LLMNER.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生物医学命名实体识别 大型语言模型 文本生成 跨语言泛化
相关文章