cs.AI updates on arXiv.org 10月13日
ACPO:强化学习新框架提升LLMs推理能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ACPO,一种结合难度感知课程和轨迹语义分割的强化学习框架,有效平衡探索与利用,显著提升LLMs推理性能。

arXiv:2510.08899v1 Announce Type: cross Abstract: While Reinforcement Learning with Verifiable Rewards (RLVR) enhances complex reasoning in LLMs, current methods struggle to balance exploration and exploitation. This leads to critical issues like inaccurate credit assignment for intermediate steps and premature entropy collapse, limiting model performance. To address this, we introduce Attribution-based Contribution to Policy Optimization (ACPO), a phased framework that incorporates a difficulty-aware curriculum. ACPO improves exploration by using trajectory semantic segmentation and an attribution-based representation to dynamically regulate policy entropy, thus mitigating its collapse. Concurrently, it enhances exploitation with a factorized reward system that precisely quantifies the hierarchical contribution of each reasoning step, ensuring accurate credit assignment. Extensive experiments on challenging benchmarks, including AIME, MATH, and AMC, demonstrate that ACPO significantly outperforms existing state-of-the-art approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 LLMs 推理能力 ACPO 探索与利用
相关文章