cs.AI updates on arXiv.org 10月13日
基于数据安全原理的AI防御新策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于数据安全原理的AI防御新策略,通过在工具输出中实施token级别的净化过程,有效降低间接提示注入攻击的成功率,同时不损害AI系统的正常功能。

arXiv:2510.08829v1 Announce Type: cross Abstract: The increasing adoption of LLM agents with access to numerous tools and sensitive data significantly widens the attack surface for indirect prompt injections. Due to the context-dependent nature of attacks, however, current defenses are often ill-calibrated as they cannot reliably differentiate malicious and benign instructions, leading to high false positive rates that prevent their real-world adoption. To address this, we present a novel approach inspired by the fundamental principle of computer security: data should not contain executable instructions. Instead of sample-level classification, we propose a token-level sanitization process, which surgically removes any instructions directed at AI systems from tool outputs, capturing malicious instructions as a byproduct. In contrast to existing safety classifiers, this approach is non-blocking, does not require calibration, and is agnostic to the context of tool outputs. Further, we can train such token-level predictors with readily available instruction-tuning data only, and don't have to rely on unrealistic prompt injection examples from challenges or of other synthetic origin. In our experiments, we find that this approach generalizes well across a wide range of attacks and benchmarks like AgentDojo, BIPIA, InjecAgent, ASB and SEP, achieving a 7-10x reduction of attack success rate (ASR) (34% to 3% on AgentDojo), without impairing agent utility in both benign and malicious settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI防御 数据安全 间接提示注入
相关文章