cs.AI updates on arXiv.org 10月13日 12:13
基于POMDP的深空任务自适应仪器调度框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于部分可观察马尔可夫决策过程(POMDP)的深空任务自适应仪器调度框架,通过集成贝叶斯网络提高科学数据的可解释性和计算效率,并在案例研究中展示其性能优势。

arXiv:2510.08812v1 Announce Type: cross Abstract: Deep space missions face extreme communication delays and environmental uncertainty that prevent real-time ground operations. To support autonomous science operations in communication-constrained environments, we present a partially observable Markov decision process (POMDP) framework that adaptively sequences spacecraft science instruments. We integrate a Bayesian network into the POMDP observation space to manage the high-dimensional and uncertain measurements typical of astrobiology missions. This network compactly encodes dependencies among measurements and improves the interpretability and computational tractability of science data. Instrument operation policies are computed offline, allowing resource-aware plans to be generated and thoroughly validated prior to launch. We use the Enceladus Orbilander's proposed Life Detection Suite (LDS) as a case study, demonstrating how Bayesian network structure and reward shaping influence system performance. We compare our method against the mission's baseline Concept of Operations (ConOps), evaluating both misclassification rates and performance in off-nominal sample accumulation scenarios. Our approach reduces sample identification errors by nearly 40%

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

POMDP 深空任务 仪器调度 贝叶斯网络 科学数据
相关文章