cs.AI updates on arXiv.org 10月13日 12:13
LLM在地理编码中的应用与优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了地理编码中组合位置引用的挑战,评估了LLM在地理空间知识和推理技能方面的表现,并提出了一种基于LLM的地理编码策略,展示了该方法在性能上的提升。

arXiv:2510.08741v1 Announce Type: cross Abstract: Geocoding is the task of linking a location reference to an actual geographic location and is essential for many downstream analyses of unstructured text. In this paper, we explore the challenging setting of geocoding compositional location references. Building on recent work demonstrating LLMs' abilities to reason over geospatial data, we evaluate LLMs' geospatial knowledge versus reasoning skills relevant to our task. Based on these insights, we propose an LLM-based strategy for geocoding compositional location references. We show that our approach improves performance for the task and that a relatively small fine-tuned LLM can achieve comparable performance with much larger off-the-shelf models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

地理编码 LLM 地理空间知识 推理技能 性能优化
相关文章