cs.AI updates on arXiv.org 10月13日 12:13
RAG框架提升软件问题解决效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合语义嵌入和向量搜索的RAG框架,用于提高现代软件团队解决重复或相关问题的效率,通过检索和综合历史案例,显著提升了解决准确性、修复质量和知识重用。

arXiv:2510.08667v1 Announce Type: cross Abstract: Modern software teams frequently encounter delays in resolving recurring or related issues due to fragmented knowledge scattered across JIRA tickets, developer discussions, and GitHub pull requests (PRs). To address this challenge, we propose a Retrieval-Augmented Generation (RAG) framework that integrates Sentence-Transformers for semantic embeddings with FAISS-based vector search to deliver context-aware ticket resolution recommendations. The approach embeds historical JIRA tickets, user comments, and linked PR metadata to retrieve semantically similar past cases, which are then synthesized by a Large Language Model (LLM) into grounded and explainable resolution suggestions. The framework contributes a unified pipeline linking JIRA and GitHub data, an embedding and FAISS indexing strategy for heterogeneous software artifacts, and a resolution generation module guided by retrieved evidence. Experimental evaluation using precision, recall, resolution time reduction, and developer acceptance metrics shows that the proposed system significantly improves resolution accuracy, fix quality, and knowledge reuse in modern DevOps environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG框架 软件问题解决 DevOps环境 知识重用 语义嵌入
相关文章