cs.AI updates on arXiv.org 10月13日
dInfer:高效扩展的dLLM推理框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为dInfer的dLLM推理框架,通过模块化设计、算法创新和系统优化,显著提升了推理效率,同时保持了输出质量。

arXiv:2510.08666v1 Announce Type: cross Abstract: Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components-model, diffusion iteration manager, decoding strategy, and KV-cache manager-and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on $8\times$ H800 GPUs. Compared to prior systems, dInfer delivers $10\times$ speedup over Fast-dLLM while maintaining similar model performance. Even compared with AR models (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with latest vLLM inference engine, dInfer still deliverers $2$-$3\times$ speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

dLLM 推理框架 效率提升 算法创新 系统优化
相关文章