cs.AI updates on arXiv.org 10月13日 12:13
CATS-Linear:线性模型的新进展
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新的线性模型CATS-Linear,通过分类辅助趋势-季节解耦线性模型和通道独立性设计,提高了线性模型的预测性能,实验结果表明其准确度达到业界领先水平。

arXiv:2510.08661v1 Announce Type: cross Abstract: Recent research demonstrates that linear models achieve forecasting performance competitive with complex architectures, yet methodologies for enhancing linear models remain underexplored. Motivated by the hypothesis that distinct time series instances may follow heterogeneous linear mappings, we propose the Classification Auxiliary Trend-Seasonal Decoupling Linear Model CATS-Linear, employing Classification Auxiliary Channel-Independence (CACI). CACI dynamically routes instances to dedicated predictors via classification, enabling supervised channel design. We further analyze the theoretical expected risks of different channel settings. Additionally, we redesign the trend-seasonal decomposition architecture by adding a decoupling -- linear mapping -- recoupling framework for trend components and complex-domain linear projections for seasonal components. Extensive experiments validate that CATS-Linear with fixed hyperparameters achieves state-of-the-art accuracy comparable to hyperparameter-tuned baselines while delivering SOTA accuracy against fixed-hyperparameter counterparts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

线性模型 预测性能 分类辅助 趋势-季节解耦
相关文章