cs.AI updates on arXiv.org 10月13日 12:12
代码补全:基于LLM的上下文收集策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种有效的上下文收集策略,用于提升大型语言模型在代码补全任务中的性能。通过代码块预处理和基于语法和语义相似性的检索,提高代码补全任务的准确率。

arXiv:2510.08610v1 Announce Type: cross Abstract: Code completion can help developers improve efficiency and ease the development lifecycle. Although code completion is available in modern integrated development environments (IDEs), research lacks in determining what makes a good context for code completion based on the information available to the IDEs for the large language models (LLMs) to perform better. In this paper, we describe an effective context collection strategy to assist the LLMs in performing better at code completion tasks. The key idea of our strategy is to preprocess the repository into smaller code chunks and later use syntactic and semantic similarity-based code chunk retrieval with relative positioning. We found that code chunking and relative positioning of the chunks in the final context improve the performance of code completion tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

代码补全 大型语言模型 上下文收集策略 代码块检索 性能提升
相关文章