cs.AI updates on arXiv.org 10月13日 12:11
本地部署开源LLMs在下一代操作系统中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了本地部署的开源大型语言模型(LLMs)在下一代操作系统中的应用,通过实证研究评估了其作为自主、本地操作组件的可行性和潜力,为AI基础设施的去中心化和民主化提供了讨论基础。

arXiv:2510.08576v1 Announce Type: cross Abstract: Large Language Models (LLMs) have emerged as transformative tools for natural language understanding and user intent resolution, enabling tasks such as translation, summarization, and, increasingly, the orchestration of complex workflows. This development signifies a paradigm shift from conventional, GUI-driven user interfaces toward intuitive, language-first interaction paradigms. Rather than manually navigating applications, users can articulate their objectives in natural language, enabling LLMs to orchestrate actions across multiple applications in a dynamic and contextual manner. However, extant implementations frequently rely on cloud-based proprietary models, which introduce limitations in terms of privacy, autonomy, and scalability. For language-first interaction to become a truly robust and trusted interface paradigm, local deployment is not merely a convenience; it is an imperative. This limitation underscores the importance of evaluating the feasibility of locally deployable, open-source, and open-access LLMs as foundational components for future intent-based operating systems. In this study, we examine the capabilities of several open-source and open-access models in facilitating user intention resolution through machine assistance. A comparative analysis is conducted against OpenAI's proprietary GPT-4-based systems to assess performance in generating workflows for various user intentions. The present study offers empirical insights into the practical viability, performance trade-offs, and potential of open LLMs as autonomous, locally operable components in next-generation operating systems. The results of this study inform the broader discussion on the decentralization and democratization of AI infrastructure and point toward a future where user-device interaction becomes more seamless, adaptive, and privacy-conscious through locally embedded intelligence.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 本地部署 下一代操作系统 开源LLMs AI基础设施
相关文章