cs.AI updates on arXiv.org 10月13日
多模态知识融合提升3D手势识别
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种高效的多模态知识融合方法,用于训练单模态3D卷积神经网络,以实现动态手势识别。通过在各个网络中嵌入多模态知识,提高单模态网络性能,并引入时空语义对齐损失和焦点正则化参数,实现跨模态信息有效整合,实验结果显示该方法在多个数据集上取得了最先进的识别准确率。

arXiv:1812.06145v2 Announce Type: cross Abstract: We present an efficient approach for leveraging the knowledge from multiple modalities in training unimodal 3D convolutional neural networks (3D-CNNs) for the task of dynamic hand gesture recognition. Instead of explicitly combining multimodal information, which is commonplace in many state-of-the-art methods, we propose a different framework in which we embed the knowledge of multiple modalities in individual networks so that each unimodal network can achieve an improved performance. In particular, we dedicate separate networks per available modality and enforce them to collaborate and learn to develop networks with common semantics and better representations. We introduce a "spatiotemporal semantic alignment" loss (SSA) to align the content of the features from different networks. In addition, we regularize this loss with our proposed "focal regularization parameter" to avoid negative knowledge transfer. Experimental results show that our framework improves the test time recognition accuracy of unimodal networks, and provides the state-of-the-art performance on various dynamic hand gesture recognition datasets.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

3D卷积神经网络 动态手势识别 多模态知识融合
相关文章