cs.AI updates on arXiv.org 10月13日
LLM在社交推理游戏中的说服力研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于强化学习的框架,通过将社交推理游戏中的对话形式化为Stackelberg竞争,训练LLM代理以优化说服力,显著提升其在社交推理游戏中的表现。

arXiv:2510.09087v1 Announce Type: new Abstract: Large language model (LLM) agents have shown remarkable progress in social deduction games (SDGs). However, existing approaches primarily focus on information processing and strategy selection, overlooking the significance of persuasive communication in influencing other players' beliefs and responses. In SDGs, success depends not only on making correct deductions but on convincing others to response in alignment with one's intent. To address this limitation, we formalize turn-based dialogue in SDGs as a Stackelberg competition, where the current player acts as the leader who strategically influences the follower's response. Building on this theoretical foundation, we propose a reinforcement learning framework that trains agents to optimize utterances for persuasive impact. Through comprehensive experiments across three diverse SDGs, we demonstrate that our agents significantly outperform baselines. This work represents a significant step toward developing AI agents capable of strategic social influence, with implications extending to scenarios requiring persuasive communication.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 社交推理游戏 说服力 强化学习 Stackelberg竞争
相关文章