cs.AI updates on arXiv.org 10月13日 12:09
Tiny-R1V:轻量级多模态LLM推理优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Tiny-R1V,一种轻量级3B多模态LLM,通过两阶段优化实现快速推理和更高精度,同时统一多任务中的多模态推理。

arXiv:2510.08987v1 Announce Type: new Abstract: Although Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, they encounter numerous challenges in terms of reasoning efficiency, such as large model size, overthinking, and compromised accuracy in lightweight scenarios. However, research on the reasoning capabilities of lightweight MLLMs is quite lacking. To this end, we propose Tiny-R1V, a novel lightweight 3B model that achieves faster inference and higher accuracy via a two-stage optimization, while unifying multimodal reasoning across multiple tasks and using fewer tokens. In the first stage, Tiny-R1V introduces Length-Informed Relative Policy Optimization (LIPO), a novel reinforcement learning method, to train each reasoning model. The LIPO is designed to dynamically adjusts advantages of responses within groups, that is, by prioritizing concise yet high-quality responses to encourage the generation of shorter and more accurate response. In the second stage, we propose Adaptive Model Merging (AMM), a training-free model merging method that merges multiple specialist models into a unified architecture. Specifically, AMM adaptively adjusts the weights of task vectors and robustly optimizes the merged vectors via a novel gradient projection regularization loss function, thus mitigating redundant conflicts between them. Extensive evaluations on ten widely-used reasoning benchmarks covering mathematics, structured data (charts, tables, documents), OCR, and general capabilities showcase the superior performance of Tiny-R1V, enabling lightweight models to excel in diverse multimodal reasoning tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Tiny-R1V 轻量级LLM 多模态推理 优化算法 模型合并
相关文章