cs.AI updates on arXiv.org 10月13日
UniWM:统一世界模型提升导航性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出UniWM,一种整合视觉预见与规划的统一世界模型,显著提高导航成功率,降低轨迹误差,实现零样本泛化。

arXiv:2510.08713v1 Announce Type: new Abstract: Enabling embodied agents to effectively imagine future states is critical for robust and generalizable visual navigation. Current state-of-the-art approaches, however, adopt modular architectures that separate navigation planning from visual world modeling, leading to state-action misalignment and limited adaptability in novel or dynamic scenarios. To overcome this fundamental limitation, we propose UniWM, a unified, memory-augmented world model integrating egocentric visual foresight and planning within a single multimodal autoregressive backbone. Unlike modular frameworks, UniWM explicitly grounds action decisions in visually imagined outcomes, ensuring tight alignment between prediction and control. A hierarchical memory mechanism further integrates detailed short-term perceptual cues with longer-term trajectory context, enabling stable, coherent reasoning over extended horizons. Extensive experiments across four challenging benchmarks (Go Stanford, ReCon, SCAND, HuRoN) demonstrate that UniWM substantially improves navigation success rates by up to 30%, significantly reduces trajectory errors compared to strong baselines, and exhibits impressive zero-shot generalization on the unseen TartanDrive dataset. These results highlight UniWM as a principled step toward unified, imagination-driven embodied navigation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

统一世界模型 导航性能 视觉预见 规划 泛化能力
相关文章