cs.AI updates on arXiv.org 10月10日
Transformer神经网络在结构健康监测中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文首次提出将Transformer神经网络与Masked Auto-Encoder架构应用于结构健康监测,通过自监督预训练和任务特定微调,在异常检测和交通负荷估计任务中超越传统方法,并通过知识蒸馏提升小型Transformer的性能。

arXiv:2404.02944v2 Announce Type: replace-cross Abstract: Structural Health Monitoring (SHM) is a critical task for ensuring the safety and reliability of civil infrastructures, typically realized on bridges and viaducts by means of vibration monitoring. In this paper, we propose for the first time the use of Transformer neural networks, with a Masked Auto-Encoder architecture, as Foundation Models for SHM. We demonstrate the ability of these models to learn generalizable representations from multiple large datasets through self-supervised pre-training, which, coupled with task-specific fine-tuning, allows them to outperform state-of-the-art traditional methods on diverse tasks, including Anomaly Detection (AD) and Traffic Load Estimation (TLE). We then extensively explore model size versus accuracy trade-offs and experiment with Knowledge Distillation (KD) to improve the performance of smaller Transformers, enabling their embedding directly into the SHM edge nodes. We showcase the effectiveness of our foundation models using data from three operational viaducts. For AD, we achieve a near-perfect 99.9% accuracy with a monitoring time span of just 15 windows. In contrast, a state-of-the-art method based on Principal Component Analysis (PCA) obtains its first good result (95.03% accuracy), only considering 120 windows. On two different TLE tasks, our models obtain state-of-the-art performance on multiple evaluation metrics (R$^2$ score, MAE% and MSE%). On the first benchmark, we achieve an R$^2$ score of 0.97 and 0.90 for light and heavy vehicle traffic, respectively, while the best previous approach (a Random Forest) stops at 0.91 and 0.84. On the second one, we achieve an R$^2$ score of 0.54 versus the 0.51 of the best competitor method, a Long-Short Term Memory network.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

结构健康监测 Transformer神经网络 异常检测 交通负荷估计 知识蒸馏
相关文章