cs.AI updates on arXiv.org 10月10日 12:20
LLM+PDDL规划方法在灾难恢复任务中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合大型语言模型(LLM)和符号规划语言(PDDL)的自动规划方法,通过进化算法优化初始翻译,以提高非专家用户从自然语言描述生成规划方案的准确性。

arXiv:2412.00300v2 Announce Type: replace Abstract: Automated planning using a symbolic planning language, such as PDDL, is a general approach to producing optimal plans to achieve a stated goal. However, creating suitable machine understandable descriptions of the planning domain, problem, and goal requires expertise in the planning language, limiting the utility of these tools for non-expert humans. Recent efforts have explored utilizing a symbolic planner in conjunction with a large language model to generate plans from natural language descriptions given by a non-expert human (LLM+PDDL). Our approach performs initial translation of goal specifications to a set of PDDL goal constraints using an LLM; such translations often result in imprecise symbolic specifications, which are difficult to validate directly. We account for this using an evolutionary approach to generate a population of symbolic goal specifications with slight differences from the initial translation, and utilize a trained LSTM-based validation model to assess whether each induced plan in the population adheres to the natural language specifications. We evaluate our approach on a collection of prototypical specifications in a notional naval disaster recovery task, and demonstrate that our evolutionary approach improve adherence of generated plans to natural language specifications when compared to plans generated using only LLM translations. The code for our method can be found at https://github.com/owenonline/PlanCritic.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM PDDL 自动规划 灾难恢复 进化算法
相关文章