cs.AI updates on arXiv.org 10月10日
神经网络激活函数的严谨分类框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于积分签名的神经网络激活函数分类框架,通过结合高斯传播统计、渐近斜率和正则性度量,对激活函数进行严谨分类,并通过实证分析验证了理论预测。

arXiv:2510.08456v1 Announce Type: cross Abstract: Activation functions govern the expressivity and stability of neural networks, yet existing comparisons remain largely heuristic. We propose a rigorous framework for their classification via a nine-dimensional integral signature S_sigma(phi), combining Gaussian propagation statistics (m1, g1, g2, m2, eta), asymptotic slopes (alpha_plus, alpha_minus), and regularity measures (TV(phi'), C(phi)). This taxonomy establishes well-posedness, affine reparameterization laws with bias, and closure under bounded slope variation. Dynamical analysis yields Lyapunov theorems with explicit descent constants and identifies variance stability regions through (m2', g2). From a kernel perspective, we derive dimension-free Hessian bounds and connect smoothness to bounded variation of phi'. Applying the framework, we classify eight standard activations (ReLU, leaky-ReLU, tanh, sigmoid, Swish, GELU, Mish, TeLU), proving sharp distinctions between saturating, linear-growth, and smooth families. Numerical Gauss-Hermite and Monte Carlo validation confirms theoretical predictions. Our framework provides principled design guidance, moving activation choice from trial-and-error to provable stability and kernel conditioning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 激活函数 分类框架 高斯传播统计 实证分析
相关文章