cs.AI updates on arXiv.org 10月10日 12:18
系列符号数据生成与预训练时间序列分析模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于复杂动态系统理论的时间序列数据生成机制,并开发预训练模型SymTime,以解决时间序列分析中的数据稀缺问题,显著提升任务性能。

arXiv:2510.08445v1 Announce Type: cross Abstract: Foundation models for time series analysis (TSA) have attracted significant attention. However, challenges such as training data scarcity and imbalance continue to hinder their development. Inspired by complex dynamic system theories, we design a series-symbol data generation mechanism, enabling the unrestricted creation of high-quality time series data paired with corresponding symbolic expressions. To leverage series-symbol data pairs with strong correlations, we develop \texttt{SymTime}, a pre-trained foundation model for enhancing time series representation using symbolic information. \texttt{SymTime} demonstrates competitive performance across five major TSA tasks when fine-tunes with downstream tasks, rivaling foundation models pre-trained on real-world datasets. This approach underscores the potential of series-symbol data generation and pretraining mechanisms in overcoming data scarcity and enhancing task performance. The code is available at https://github.com/wwhenxuan/SymTime.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列分析 数据生成 预训练模型 SymTime 动态系统
相关文章