cs.AI updates on arXiv.org 10月10日 12:18
深度强化学习框架DeepEN优化重症患者肠内营养
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为DeepEN的深度强化学习框架,用于重症患者的个性化肠内营养。该框架基于MIMIC-IV数据库中的超过11,000名ICU患者数据,为每位患者生成个性化的营养摄入建议,并通过临床验证,显著降低了死亡率。

arXiv:2510.08350v1 Announce Type: cross Abstract: We introduce DeepEN, a deep reinforcement learning (RL) framework for personalized enteral nutrition (EN) in critically ill patients. Trained offline on over 11,000 ICU patients from the MIMIC-IV database, DeepEN generates 4-hourly recommendations for caloric, protein, and fluid intake tailored to each patient's evolving physiology. The model integrates a curated, clinically informed state space with a custom reward function that balances short-term physiological and nutrition-related goals with long-term survival outcomes. Using a dueling double deep Q-network with conservative Q-learning regularization, DeepEN learns clinically realistic policies that align with high-value clinician actions while discouraging unsafe deviations. Across various qualitative and quantitative metrics, DeepEN outperforms clinician-derived and guideline-based policies, achieving a 3.7 $\pm$ 0.17 percentage-point reduction in estimated mortality (18.8% vs 22.5%) and improvements in key nutritional biomarkers. These findings highlight the potential of safe, data-driven personalization of EN therapy to improve outcomes beyond traditional guideline- or heuristic-based approaches.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度强化学习 肠内营养 重症患者 个性化治疗 死亡率
相关文章