cs.AI updates on arXiv.org 10月10日
高维观测数据反事实识别研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了从观测数据中识别高维多变量反事实的问题,通过连续时间流和动态最优传输工具,建立了多元反事实识别的基础,并验证了理论在控制场景下的有效性。

arXiv:2510.08294v1 Announce Type: cross Abstract: We address the open question of counterfactual identification for high-dimensional multivariate outcomes from observational data. Pearl (2000) argues that counterfactuals must be identifiable (i.e., recoverable from the observed data distribution) to justify causal claims. A recent line of work on counterfactual inference shows promising results but lacks identification, undermining the causal validity of its estimates. To address this, we establish a foundation for multivariate counterfactual identification using continuous-time flows, including non-Markovian settings under standard criteria. We characterise the conditions under which flow matching yields a unique, monotone and rank-preserving counterfactual transport map with tools from dynamic optimal transport, ensuring consistent inference. Building on this, we validate the theory in controlled scenarios with counterfactual ground-truth and demonstrate improvements in axiomatic counterfactual soundness on real images.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

反事实识别 高维数据 连续时间流 动态最优传输 因果推断
相关文章