cs.AI updates on arXiv.org 10月10日
视频语言模型逻辑一致性问题研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了大型语言模型在视频语言模型中的逻辑不一致问题,提出了一种基于时间条件注意力锐化的解决方案,提高了模型的时序逻辑一致性。

arXiv:2510.08138v1 Announce Type: cross Abstract: Large language models (LLMs) often generate self-contradictory outputs, which severely impacts their reliability and hinders their adoption in practical applications. In video-language models (Video-LLMs), this phenomenon recently draws the attention of researchers. Specifically, these models fail to provide logically consistent responses to rephrased questions based on their grounding outputs. However, the underlying causes of this phenomenon remain underexplored. In this work, we adopt an interpretability-driven approach to analyze, statistically summarize, and intervention the potential factors of the phenomenon. We find that one of the primary reasons for the inconsistency in responses lies in the inability of cross-modal attention heads to effectively distinguish video tokens across different timestamps. To address this, we propose an attention enhancement method called Temporally Conditioned Attention Sharpening (TCAS), which constructs an enhancement objective based on attention distinctions to enhance the model's temporal resolution capability, thereby improving its temporal understanding logic consistency. Experimental results demonstrate that our method significantly enhances the temporal logic consistency of Video-LLMs. Further interpretability analyses reveal that our method indeed improves the temporal discriminability of attention heads, validating our conclusions. Additionally, our method achieves performance improvements in general video temporal grounding tasks, highlighting that temporal logic consistency is a bottleneck in temporal understanding. By enhancing consistency, our method drives significant progress in video temporal understanding.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视频语言模型 逻辑一致性 注意力机制 时间分辨率 模型改进
相关文章