cs.AI updates on arXiv.org 10月10日 12:15
IoT攻击检测新架构提升安全性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对物联网攻击检测的新集成学习架构,运用高级机器学习技术,实现高准确率与低误报,为保障物联网环境安全提供有效方法。

arXiv:2510.08084v1 Announce Type: cross Abstract: The rapid expansion of Internet of Things (IoT) devices has transformed industries and daily life by enabling widespread connectivity and data exchange. However, this increased interconnection has introduced serious security vulnerabilities, making IoT systems more exposed to sophisticated cyber attacks. This study presents a novel ensemble learning architecture designed to improve IoT attack detection. The proposed approach applies advanced machine learning techniques, specifically the Extra Trees Classifier, along with thorough preprocessing and hyperparameter optimization. It is evaluated on several benchmark datasets including CICIoT2023, IoTID20, BotNeTIoT L01, ToN IoT, N BaIoT, and BoT IoT. The results show excellent performance, achieving high recall, accuracy, and precision with very low error rates. These outcomes demonstrate the model efficiency and superiority compared to existing approaches, providing an effective and scalable method for securing IoT environments. This research establishes a solid foundation for future progress in protecting connected devices from evolving cyber threats.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

物联网安全 机器学习 攻击检测 集成学习 数据预处理
相关文章