cs.AI updates on arXiv.org 10月10日
ZeroCard:基于语义的基数估计新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ZeroCard,一种基于语义的基数估计方法,无需依赖原始数据或查询,通过预测数据分布和使用查询模板无关的表示方法,提高基数估计的泛化能力,并展示其在查询优化中的应用。

arXiv:2510.07983v1 Announce Type: cross Abstract: Cardinality estimation is a fundamental task in database systems and plays a critical role in query optimization. Despite significant advances in learning-based cardinality estimation methods, most existing approaches remain difficult to generalize to new datasets due to their strong dependence on raw data or queries, thus limiting their practicality in real scenarios. To overcome these challenges, we argue that semantics in the schema may benefit cardinality estimation, and leveraging such semantics may alleviate these dependencies. To this end, we introduce ZeroCard, the first semantics-driven cardinality estimation method that can be applied without any dependence on raw data access, query logs, or retraining on the target database. Specifically, we propose to predict data distributions using schema semantics, thereby avoiding raw data dependence. Then, we introduce a query template-agnostic representation method to alleviate query dependence. Finally, we construct a large-scale query dataset derived from real-world tables and pretrain ZeroCard on it, enabling it to learn cardinality from schema semantics and predicate representations. After pretraining, ZeroCard's parameters can be frozen and applied in an off-the-shelf manner. We conduct extensive experiments to demonstrate the distinct advantages of ZeroCard and show its practical applications in query optimization. Its zero-dependence property significantly facilitates deployment in real-world scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

基数估计 语义驱动 查询优化 ZeroCard 数据分布
相关文章