cs.AI updates on arXiv.org 10月10日 12:14
LLMs在社交推理任务中的挑战与改进
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了大型语言模型在社交推理任务中的困难,提出了一种自适应世界模型增强推理机制,通过动态文本世界模型跟踪实体状态和时间序列,有效提升了模型在社交场景中的推理准确性和效率。

arXiv:2510.07974v1 Announce Type: cross Abstract: While large language models (LLMs) excel in mathematical and code reasoning, we observe they struggle with social reasoning tasks, exhibiting cognitive confusion, logical inconsistencies, and conflation between objective world states and subjective belief states. Through deteiled analysis of DeepSeek-R1's reasoning trajectories, we find that LLMs frequently encounter reasoning impasses and tend to output contradictory terms like "tricky" and "confused" when processing scenarios with multiple participants and timelines, leading to erroneous reasoning or infinite loops. The core issue is their inability to disentangle objective reality from agents' subjective beliefs. To address this, we propose an adaptive world model-enhanced reasoning mechanism that constructs a dynamic textual world model to track entity states and temporal sequences. It dynamically monitors reasoning trajectories for confusion indicators and promptly intervenes by providing clear world state descriptions, helping models navigate through cognitive dilemmas. The mechanism mimics how humans use implicit world models to distinguish between external events and internal beliefs. Evaluations on three social benchmarks demonstrate significant improvements in accuracy (e.g., +10% in Hi-ToM) while reducing computational costs (up to 33.8% token reduction), offering a simple yet effective solution for deploying LLMs in social contexts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 社交推理 世界模型 推理机制 准确率提升
相关文章