cs.AI updates on arXiv.org 10月10日
TTOM:提升视频生成模型跨模态对齐能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Test-Time Optimization and Memorization(TTOM)框架,通过优化新参数和参数记忆机制,提升视频生成模型在复合场景下的表现,实现即时跨模态对齐。

arXiv:2510.07940v1 Announce Type: cross Abstract: Video Foundation Models (VFMs) exhibit remarkable visual generation performance, but struggle in compositional scenarios (e.g., motion, numeracy, and spatial relation). In this work, we introduce Test-Time Optimization and Memorization (TTOM), a training-free framework that aligns VFM outputs with spatiotemporal layouts during inference for better text-image alignment. Rather than direct intervention to latents or attention per-sample in existing work, we integrate and optimize new parameters guided by a general layout-attention objective. Furthermore, we formulate video generation within a streaming setting, and maintain historical optimization contexts with a parametric memory mechanism that supports flexible operations, such as insert, read, update, and delete. Notably, we found that TTOM disentangles compositional world knowledge, showing powerful transferability and generalization. Experimental results on the T2V-CompBench and Vbench benchmarks establish TTOM as an effective, practical, scalable, and efficient framework to achieve cross-modal alignment for compositional video generation on the fly.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视频生成模型 跨模态对齐 TTOM框架
相关文章