cs.AI updates on arXiv.org 10月10日
VAMO:优化在线广告多任务学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出VAMO算法,通过自适应任务权重分配和周期性时间模块,提高在线广告中多任务学习的效率和性能。

arXiv:2510.07760v1 Announce Type: cross Abstract: In online advertising, heterogeneous advertiser requirements give rise to numerous customized bidding tasks that are typically optimized independently, resulting in extensive computation and limited data efficiency. Multi-task learning offers a principled framework to train these tasks jointly through shared representations. However, existing multi-task optimization strategies are primarily guided by training dynamics and often generalize poorly in volatile bidding environments. To this end, we present Validation-Aligned Multi-task Optimization (VAMO), which adaptively assigns task weights based on the alignment between per-task training gradients and a held-out validation gradient, thereby steering updates toward validation improvement and better matching deployment objectives. We further equip the framework with a periodicity-aware temporal module and couple it with an advanced generative auto-bidding backbone to enhance cross-task transfer of seasonal structure and strengthen bidding performance. Meanwhile, we provide theoretical insights into the proposed method, e.g., convergence guarantee and alignment analysis. Extensive experiments on both simulated and large-scale real-world advertising systems consistently demonstrate significant improvements over typical baselines, illuminating the effectiveness of the proposed approach.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

在线广告 多任务学习 VAMO算法
相关文章