cs.AI updates on arXiv.org 10月10日
DGTEN:动态图信任评估网络
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DGTEN,一种基于深度高斯的信任评估网络,用于动态大图中信任评估,通过不确定性感知消息传递、表达性时间建模和内置防御机制,实现风险感知的信任决策。

arXiv:2510.07620v1 Announce Type: cross Abstract: Dynamic trust evaluation in large, rapidly evolving graphs requires models that can capture changing relationships, express calibrated confidence, and resist adversarial manipulation. DGTEN (Deep Gaussian-based Trust Evaluation Network) introduces a unified graph framework that achieves all three by combining uncertainty-aware message passing, expressive temporal modeling, and built-in defenses against trust-targeted attacks. It represents nodes and edges as Gaussian distributions so that both semantic signals and epistemic uncertainty propagate through the graph neural network, enabling risk-aware trust decisions rather than overconfident guesses. To model how trust evolves, it employs hybrid Absolute-Gaussian-Hourglass (HAGH) positional encoding with Kolmogorov-Arnold network-based unbiased multi-head attention, followed by an ordinary differential equation (ODE)-based residual learning module to jointly capture abrupt shifts and smooth trends. Robust adaptive ensemble coefficient analysis prunes or down-weights suspicious interactions using complementary cosine and Jaccard similarity measures, mitigating reputation laundering, sabotage, and on/off attacks. On two signed Bitcoin trust networks, DGTEN delivers significant improvements: in single-timeslot prediction on Bitcoin-Alpha, it improves MCC by 10.77% over the best dynamic baseline; in the cold-start scenario, it achieves a 16.41% MCC gain - the largest across all tasks and datasets. Under adversarial on/off attacks, it surpasses the baseline by up to 11.63% MCC. These results validate the effectiveness of the unified DGTEN framework.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DGTEN 动态图信任评估 深度学习 信任网络
相关文章