cs.AI updates on arXiv.org 10月10日
轻量级BERT预微调框架提升移动NLP应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于任务优先LoRA模块的多任务预微调框架,用于提高轻量级BERT-like编码器在命名实体识别和文本分类任务中的适应性,实验结果表明该方法在移动NLP应用中具有显著性能提升。

arXiv:2510.07566v1 Announce Type: cross Abstract: Deploying natural language processing (NLP) models on mobile platforms requires models that can adapt across diverse applications while remaining efficient in memory and computation. We investigate pre-finetuning strategies to enhance the adaptability of lightweight BERT-like encoders for two fundamental NLP task families: named entity recognition (NER) and text classification. While pre-finetuning improves downstream performance for each task family individually, we find that na\"ive multi-task pre-finetuning introduces conflicting optimization signals that degrade overall performance. To address this, we propose a simple yet effective multi-task pre-finetuning framework based on task-primary LoRA modules, which enables a single shared encoder backbone with modular adapters. Our approach achieves performance comparable to individual pre-finetuning while meeting practical deployment constraint. Experiments on 21 downstream tasks show average improvements of +0.8% for NER and +8.8% for text classification, demonstrating the effectiveness of our method for versatile mobile NLP applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

轻量级BERT 预微调 命名实体识别 文本分类 移动NLP
相关文章