cs.AI updates on arXiv.org 10月10日 12:10
BERTopic在LLMs对话数据中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究采用BERTopic技术分析大型语言模型对话数据,揭示主题模式与用户偏好关系,为模型优化提供依据。

arXiv:2510.07557v1 Announce Type: cross Abstract: This study applies BERTopic, a transformer-based topic modeling technique, to the lmsys-chat-1m dataset, a multilingual conversational corpus built from head-to-head evaluations of large language models (LLMs). Each user prompt is paired with two anonymized LLM responses and a human preference label, used to assess user evaluation of competing model outputs. The main objective is uncovering thematic patterns in these conversations and examining their relation to user preferences, particularly if certain LLMs are consistently preferred within specific topics. A robust preprocessing pipeline was designed for multilingual variation, balancing dialogue turns, and cleaning noisy or redacted data. BERTopic extracted over 29 coherent topics including artificial intelligence, programming, ethics, and cloud infrastructure. We analysed relationships between topics and model preferences to identify trends in model-topic alignment. Visualization techniques included inter-topic distance maps, topic probability distributions, and model-versus-topic matrices. Our findings inform domain-specific fine-tuning and optimization strategies for improving real-world LLM performance and user satisfaction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

BERTopic LLMs对话数据 主题模式 用户偏好 模型优化
相关文章