cs.AI updates on arXiv.org 10月10日
基于小波变换的睡眠阶段自动分类框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于小波变换的时间-频率分析方法,用于自动睡眠阶段评分。实验结果表明,该方法在睡眠阶段分类中具有较高的准确性和F1分数,优于传统机器学习方法,与深度学习方法相当。

arXiv:2510.07524v1 Announce Type: cross Abstract: Accurate classification of sleep stages is crucial for the diagnosis and management of sleep disorders. Conventional approaches for sleep scoring rely on manual annotation or features extracted from EEG signals in the time or frequency domain. This study proposes a novel framework for automated sleep stage scoring using time-frequency analysis based on the wavelet transform. The Sleep-EDF Expanded Database (sleep-cassette recordings) was used for evaluation. The continuous wavelet transform (CWT) generated time-frequency maps that capture both transient and oscillatory patterns across frequency bands relevant to sleep staging. Experimental results demonstrate that the proposed wavelet-based representation, combined with ensemble learning, achieves an overall accuracy of 88.37 percent and a macro-averaged F1 score of 73.15, outperforming conventional machine learning methods and exhibiting comparable or superior performance to recent deep learning approaches. These findings highlight the potential of wavelet analysis for robust, interpretable, and clinically applicable sleep stage classification.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

睡眠阶段分类 小波变换 时间-频率分析 自动评分 机器学习
相关文章