cs.AI updates on arXiv.org 10月10日 12:10
MoGU:基于不确定性的高精度时间序列预测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MoGU,一种创新的混合专家(MoE)回归框架,用于时间序列预测。MoGU模型以高斯分布表示每个专家输出,并引入基于不确定性的门控机制,实现精确预测和不确定性量化,在多个时间序列预测基准上优于传统方法。

arXiv:2510.07459v1 Announce Type: cross Abstract: We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks and applied to time series forecasting. Unlike conventional MoEs that provide only point estimates, MoGU models each expert's output as a Gaussian distribution. This allows it to directly quantify both the forecast (the mean) and its inherent uncertainty (variance). MoGU's core innovation is its uncertainty-based gating mechanism, which replaces the traditional input-based gating network by using each expert's estimated variance to determine its contribution to the final prediction. Evaluated across diverse time series forecasting benchmarks, MoGU consistently outperforms single-expert models and traditional MoE setups. It also provides well-quantified, informative uncertainties that directly correlate with prediction errors, enhancing forecast reliability. Our code is available from: https://github.com/yolish/moe_unc_tsf

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MoGU 时间序列预测 混合专家 不确定性量化 门控机制
相关文章