cs.AI updates on arXiv.org 10月10日
LLM评估体系LASER在印度语语音识别中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了基于LLM的评估体系LASER在印度语语音识别中的应用,通过利用先进的LLM模型在上下文学习方面的能力,提高了对语音识别错误分析的准确性。

arXiv:2510.07437v1 Announce Type: cross Abstract: Standard ASR evaluation metrics like Word Error Rate (WER) tend to unfairly penalize morphological and syntactic nuances that do not significantly alter sentence semantics. We introduce an LLM-based scoring rubric LASER that leverages state-of-the-art LLMs' in-context learning abilities to learn from prompts with detailed examples. Hindi LASER scores using Gemini 2.5 Pro achieved a very high correlation score of 94% with human annotations. Hindi examples in the prompt were also effective in analyzing errors in other Indian languages such as Marathi, Kannada and Malayalam. We also demonstrate how a smaller LLM like Llama 3 can be finetuned on word-pair examples derived from reference and ASR predictions to predict what kind of penalty should be applied with close to 89% accuracy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM评估体系 语音识别 印度语
相关文章