cs.AI updates on arXiv.org 10月10日 12:09
SurgiFlowVid:缓解手术视频数据不平衡的新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SurgiFlowVid的稀疏可控视频扩散框架,用于生成手术视频,以缓解手术视频数据集中罕见动作和工具的代表性不足问题。该框架通过联合去噪RGB帧和光流,提供时间归纳偏置,从而提高运动建模的鲁棒性。同时,通过稀疏视觉编码器,生成过程在轻量级信号上条件化,实现可控性。实验表明,该方法在动作识别、工具存在检测和腹腔镜运动预测等任务上均优于基线方法。

arXiv:2510.07345v1 Announce Type: cross Abstract: Surgical video datasets are essential for scene understanding, enabling procedural modeling and intra-operative support. However, these datasets are often heavily imbalanced, with rare actions and tools under-represented, which limits the robustness of downstream models. We address this challenge with $SurgiFlowVid$, a sparse and controllable video diffusion framework for generating surgical videos of under-represented classes. Our approach introduces a dual-prediction diffusion module that jointly denoises RGB frames and optical flow, providing temporal inductive biases to improve motion modeling from limited samples. In addition, a sparse visual encoder conditions the generation process on lightweight signals (e.g., sparse segmentation masks or RGB frames), enabling controllability without dense annotations. We validate our approach on three surgical datasets across tasks including action recognition, tool presence detection, and laparoscope motion prediction. Synthetic data generated by our method yields consistent gains of 10-20% over competitive baselines, establishing $SurgiFlowVid$ as a promising strategy to mitigate data imbalance and advance surgical video understanding methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SurgiFlowVid 手术视频数据 数据不平衡 视频扩散框架 稀疏编码
相关文章