cs.AI updates on arXiv.org 10月10日 12:09
LLM幻觉检测新方法:基于有效秩的量化不确定性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于有效秩的量化不确定性方法,用于检测大型语言模型中的幻觉。通过测量不同模型输出和层级的隐藏状态,该方法提供对模型内部推理过程的可解释性洞察,且无需额外知识或模块,实现理论优雅与实际高效结合。

arXiv:2510.08389v1 Announce Type: new Abstract: Detecting hallucinations in large language models (LLMs) remains a fundamental challenge for their trustworthy deployment. Going beyond basic uncertainty-driven hallucination detection frameworks, we propose a simple yet powerful method that quantifies uncertainty by measuring the effective rank of hidden states derived from multiple model outputs and different layers. Grounded in the spectral analysis of representations, our approach provides interpretable insights into the model's internal reasoning process through semantic variations, while requiring no extra knowledge or additional modules, thus offering a combination of theoretical elegance and practical efficiency. Meanwhile, we theoretically demonstrate the necessity of quantifying uncertainty both internally (representations of a single response) and externally (different responses), providing a justification for using representations among different layers and responses from LLMs to detect hallucinations. Extensive experiments demonstrate that our method effectively detects hallucinations and generalizes robustly across various scenarios, contributing to a new paradigm of hallucination detection for LLM truthfulness.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 幻觉检测 有效秩 不确定性量化
相关文章