cs.AI updates on arXiv.org 10月10日 12:08
语义相似度评分:提升LLM消费者调研准确性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为语义相似度评分(SSR)的方法,通过模拟合成消费者,有效提升了大型语言模型(LLM)在消费者调研中的准确性,同时保持了现实响应分布,并提供了丰富的定性反馈。

arXiv:2510.08338v1 Announce Type: new Abstract: Consumer research costs companies billions annually yet suffers from panel biases and limited scale. Large language models (LLMs) offer an alternative by simulating synthetic consumers, but produce unrealistic response distributions when asked directly for numerical ratings. We present semantic similarity rating (SSR), a method that elicits textual responses from LLMs and maps these to Likert distributions using embedding similarity to reference statements. Testing on an extensive dataset comprising 57 personal care product surveys conducted by a leading corporation in that market (9,300 human responses), SSR achieves 90% of human test-retest reliability while maintaining realistic response distributions (KS similarity > 0.85). Additionally, these synthetic respondents provide rich qualitative feedback explaining their ratings. This framework enables scalable consumer research simulations while preserving traditional survey metrics and interpretability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语义相似度评分 LLM消费者调研 模拟消费者 响应分布
相关文章