cs.AI updates on arXiv.org 10月10日 12:08
ScaleGMNs加速优化问题求解
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨使用Scale Equivariant Graph Metanetworks (ScaleGMNs)加速优化问题求解,通过直接在权重空间操作,实现现有模型的单次微调,减少迭代优化需求,并通过实证研究和理论结果证明了其有效性。

arXiv:2510.08300v1 Announce Type: new Abstract: Amortized optimization accelerates the solution of related optimization problems by learning mappings that exploit shared structure across problem instances. We explore the use of Scale Equivariant Graph Metanetworks (ScaleGMNs) for this purpose. By operating directly in weight space, ScaleGMNs enable single-shot fine-tuning of existing models, reducing the need for iterative optimization. We demonstrate the effectiveness of this approach empirically and provide a theoretical result: the gauge freedom induced by scaling symmetries is strictly smaller in convolutional neural networks than in multi-layer perceptrons. This insight helps explain the performance differences observed between architectures in both our work and that of Kalogeropoulos et al. (2024). Overall, our findings underscore the potential of symmetry-aware metanetworks as a powerful approach for efficient and generalizable neural network optimization. Open-source code: https://github.com/daniuyter/scalegmn_amortization

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ScaleGMNs 优化问题 神经网络
相关文章