cs.AI updates on arXiv.org 10月10日 12:08
因果视角下的推理任务与SR$^2$框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文从因果视角重新审视推理任务,提出SR$^2$框架,通过引入估计的潜在变量作为反馈,提高推理准确率,在Sudoku和Maze任务上性能提升超过10%。

arXiv:2510.08222v1 Announce Type: new Abstract: Due to their inherent complexity, reasoning tasks have long been regarded as rigorous benchmarks for assessing the capabilities of machine learning models, especially large language models (LLMs). Although humans can solve these tasks with ease, existing models, even after extensive pre-training and post-training at scale, still fail to perform reasoning reliably. In this paper, we revisit reasoning tasks from a causal perspective, seeking to understand their behavior in latent space and to offer insights for addressing their challenges. Specifically, we cast reasoning tasks as a selection mechanism, in which high-level logical concepts function as selection operators on the given observations, such as, identifying the correct answer in a math problem or filling the appropriate entry in Sudoku. We emphasize two key properties of this formulation that shed light on the difficulty of reasoning tasks. First, the latent space exceeds the observation space in complexity, even when the correct answer is fully determined by the observed input. Second, the latent variables, corresponding to logical thought, are densely structured and exhibit strong dependencies. Building on this formulation, we introduce a framework, called SR$^2$, that incorporates the estimated latent variables as feedback into the selection mechanism, thereby facilitating the learning of dense dependencies among latent representations. The framework consists of three key modules: reflective representation learning, dependency self-refinement, and periodic intermediate alignment. Experimentally, we show that our approach yields significant gains in reasoning accuracy, for example, attaining over 10$\%$ improvement in performance with 8$\times$ fewer parameters on the Sudoku and Maze tasks over the recent advances.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

推理任务 因果视角 SR$^2$框架 潜在变量 推理准确率
相关文章